""" Life tables for the United States in 2019. The leading statistic to calculate the cumulative mortality is the per-year mortality rate q(x), which reports the probability that an individual alive at age x will die before reaching age (x + 1). If we let p(x) = 1 - q(x), the cumulative mortality at age X is given by 1 minus [the product of p(x) over x = 1 to (X - 1)]. Source: `CDC `__. """ life_table = [ (0.000000, 0), (0.005575, 1), (0.005952, 2), (0.006184, 3), (0.006362, 4), (0.006507, 5), (0.006643, 6), (0.006766, 7), (0.006880, 8), (0.006984, 9), (0.007081, 10), (0.007175, 11), (0.007278, 12), (0.007409, 13), (0.007588, 14), (0.007835, 15), (0.008156, 16), (0.008553, 17), (0.009032, 18), (0.009596, 19), (0.010247, 20), (0.010987, 21), (0.011817, 22), (0.012723, 23), (0.013686, 24), (0.014692, 25), (0.015733, 26), (0.016813, 27), (0.017934, 28), (0.019102, 29), (0.020326, 30), (0.021608, 31), (0.022950, 32), (0.024352, 33), (0.025816, 34), (0.027340, 35), (0.028931, 36), (0.030593, 37), (0.032321, 38), (0.034108, 39), (0.035955, 40), (0.037873, 41), (0.039881, 42), (0.041999, 43), (0.044244, 44), (0.046635, 45), (0.049189, 46), (0.051925, 47), (0.054858, 48), (0.058009, 49), (0.061408, 50), (0.065072, 51), (0.069035, 52), (0.073353, 53), (0.078086, 54), (0.083263, 55), (0.088876, 56), (0.094917, 57), (0.101403, 58), (0.108371, 59), (0.115855, 60), (0.123892, 61), (0.132485, 62), (0.141610, 63), (0.151225, 64), (0.161317, 65), (0.171902, 66), (0.183081, 67), (0.194901, 68), (0.207437, 69), (0.220755, 70), (0.234893, 71), (0.249953, 72), (0.265848, 73), (0.283122, 74), (0.301462, 75), (0.321222, 76), (0.342262, 77), (0.364944, 78), (0.389121, 79), (0.414872, 80), (0.442132, 81), (0.470911, 82), (0.501462, 83), (0.533638, 84), (0.567049, 85), (0.601914, 86), (0.637640, 87), (0.674050, 88), (0.710638, 89), (0.746835, 90), (0.782035, 91), (0.815622, 92), (0.847014, 93), (0.875698, 94), (0.901273, 95), (0.923482, 96), (0.942229, 97), (0.957581, 98), (0.969758, 99), (0.979096, 100), ] life_table_male = [ (0.000000, 0), (0.006080, 1), (0.006493, 2), (0.006748, 3), (0.006940, 4), (0.007092, 5), (0.007239, 6), (0.007375, 7), (0.007500, 8), (0.007612, 9), (0.007713, 10), (0.007807, 11), (0.007912, 12), (0.008057, 13), (0.008275, 14), (0.008597, 15), (0.009031, 16), (0.009580, 17), (0.010253, 18), (0.011053, 19), (0.011983, 20), (0.013048, 21), (0.014243, 22), (0.015548, 23), (0.016933, 24), (0.018373, 25), (0.019859, 26), (0.021392, 27), (0.022971, 28), (0.024601, 29), (0.026289, 30), (0.028036, 31), (0.029841, 32), (0.031710, 33), (0.033644, 34), (0.035646, 35), (0.037724, 36), (0.039880, 37), (0.042111, 38), (0.044409, 39), (0.046775, 40), (0.049223, 41), (0.051777, 42), (0.054454, 43), (0.057275, 44), (0.060255, 45), (0.063417, 46), (0.066786, 47), (0.070384, 48), (0.074246, 49), (0.078409, 50), (0.082894, 51), (0.087740, 52), (0.093022, 53), (0.098812, 54), (0.105151, 55), (0.112030, 56), (0.119434, 57), (0.12738, 58), (0.135903, 59), (0.145041, 60), (0.154826, 61), (0.165258, 62), (0.176312, 63), (0.187950, 64), (0.200158, 65), (0.212958, 66), (0.226459, 67), (0.240652, 68), (0.255536, 69), (0.271106, 70), (0.287363, 71), (0.304416, 72), (0.322190, 73), (0.341343, 74), (0.361562, 75), (0.383200, 76), (0.406007, 77), (0.430512, 78), (0.456310, 79), (0.483468, 80), (0.511842, 81), (0.541477, 82), (0.572412, 83), (0.604457, 84), (0.637483, 85), (0.671409, 86), (0.705568, 87), (0.739815, 88), (0.773589, 89), (0.806293, 90), (0.837335, 91), (0.866158, 92), (0.892289, 93), (0.915373, 94), (0.935204, 95), (0.951737, 96), (0.965090, 97), (0.975516, 98), (0.983374, 99), (0.989083, 100), ] life_table_female = [ (0.000000, 0), (0.005045, 1), (0.005385, 2), (0.005593, 3), (0.005758, 4), (0.005893, 5), (0.006018, 6), (0.006129, 7), (0.006230, 8), (0.006326, 9), (0.006419, 10), (0.006513, 11), (0.006614, 12), (0.006730, 13), (0.006868, 14), (0.007037, 15), (0.007240, 16), (0.007479, 17), (0.007756, 18), (0.008073, 19), (0.008430, 20), (0.008831, 21), (0.009276, 22), (0.009761, 23), (0.010280, 24), (0.010827, 25), (0.011400, 26), (0.012002, 27), (0.012638, 28), (0.01332, 29), (0.014056, 30), (0.014853, 31), (0.015710, 32), (0.016628, 33), (0.017603, 34), (0.018634, 35), (0.019725, 36), (0.020880, 37), (0.022094, 38), (0.023360, 39), (0.024679, 40), (0.026058, 41), (0.027512, 42), (0.029061, 43), (0.030725, 44), (0.032519, 45), (0.034460, 46), (0.036557, 47), (0.038819, 48), (0.041254, 49), (0.043882, 50), (0.046716, 51), (0.049782, 52), (0.053126, 53), (0.056790, 54), (0.060795, 55), (0.065137, 56), (0.069812, 57), (0.074839, 58), (0.080254, 59), (0.086091, 60), (0.092389, 61), (0.099155, 62), (0.106365, 63), (0.113979, 64), (0.121982, 65), (0.130387, 66), (0.139288, 67), (0.148782, 68), (0.159012, 69), (0.170102, 70), (0.182122, 71), (0.195172, 72), (0.209162, 73), (0.224528, 74), (0.240966, 75), (0.258841, 76), (0.278050, 77), (0.298988, 78), (0.321575, 79), (0.345960, 80), (0.372150, 81), (0.400138, 82), (0.430390, 83), (0.462806, 84), (0.496759, 85), (0.532527, 86), (0.570043, 87), (0.608925, 88), (0.648690, 89), (0.688759, 90), (0.728470, 91), (0.767114, 92), (0.803968, 93), (0.838346, 94), (0.869647, 95), (0.897409, 96), (0.921342, 97), (0.941358, 98), (0.957563, 99), (0.97024, 100), ]